资源类型

期刊论文 614

会议视频 11

会议信息 1

年份

2023 72

2022 67

2021 53

2020 46

2019 49

2018 33

2017 33

2016 16

2015 25

2014 45

2013 19

2012 20

2011 25

2010 20

2009 23

2008 19

2007 22

2006 3

2005 2

2004 2

展开 ︾

关键词

绿色化工 5

膜分离 5

碳中和 4

节能减排 4

反渗透 3

渗透汽化 3

减灾 2

区块链 2

双极板 2

反渗透膜 2

可再生能源 2

可持续发展 2

吸附 2

温室气体 2

纳滤 2

耐氯性 2

聚偏氟乙烯 2

聚酰胺 2

膜材料 2

展开 ︾

检索范围:

排序: 展示方式:

Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO

Zongcheng ZHAN,Xiaojun LIU,Dongzhu MA,Liyun SONG,Jinzhou LI,Hong HE,Hongxing DAI

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 483-495 doi: 10.1007/s11783-013-0595-z

摘要: A novel Ultrasonic Assisted Membrane Reduction (UAMR)-hydrothermal method was used to prepare flower-like Pt/CeO catalysts. The texture, physical/chemical properties, and reducibility of the flower-like Pt/CeO catalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), N adsorption, and hydrogen temperature programmed reduction (H -TPR) techniques. The catalytic performance of the catalysts for treating automobile emission was studied relative to samples prepared by the conventional wetness impregnation method. The Pt/CeO catalysts fabricated by this novel method showed high specific surface area and metal dispersion, excellent three-way catalytic activity, and good thermal stability. The strong interaction between the Pt nanoparticles and CeO improved the thermal stability. The Ce ions were incorporated into the surfactant chains and the Pt nanoparticles were stabilized through an exchange reaction of the surface hydroxyl groups. The SEM results demonstrated that the Pt/CeO catalysts had a typical three-dimensional (3D) hierarchical porous structure, which was favorable for surface reaction and enhanced the exposure degree of the Pt nanoparticles. In brief, the flower-like Pt/CeO catalysts prepared by UAMR-hydrothermal method exhibited a higher Pt metal dispersion, smaller particle size, better three-way catalytic activity, and improved thermal stability versus conventional materials.

关键词: three-way catalyst     flower-like     Ultrasonic Assisted Membrane Reduction (UAMR)     Pt nanoparticles    

Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces

Shaolin XU,Tsunemoto KURIYAGAWA,Keita SHIMADA,Masayoshi MIZUTANI

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 33-45 doi: 10.1007/s11465-017-0422-5

摘要:

In this paper, the state of art of ultrasonic-assisted machining technologies used for fabrication of micro/nano-textured surfaces is reviewed. Diamond machining is the most widely used method in industry for manufacturing precision parts. For fabrication of fine structures on surfaces, conventional diamond machining methods are competitive by considering the precision of structures, but have limitations at machinable structures and machining efficiency, which have been proved to be partly solved by the integration of ultrasonic vibration motion. In this paper, existing ultrasonic-assisted machining methods for fabricating fine surface structures are reviewed and classified, and a rotary ultrasonic texturing (RUT) technology is mainly introduced by presenting the construction of vibration spindles, the texturing principles, and the applications of textured surfaces. Some new ideas and experimental results are presented. Finally, the challenges in using the RUT method to fabricate micro/nano-textured surfaces are discussed with respect to texturing strategies, machinable structures, and tool wear.

关键词: ultrasonic-assisted machining     textured surface     micro/nano-structures     functional performance    

Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0717-z

摘要: Bone grinding is an essential and vital procedure in most surgical operations. Currently, the insufficient cooling capacity of dry grinding, poor visibility of drip irrigation surgery area, and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding. A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling (U-NJMC) is innovatively proposed to solve the technical problem. It combines the advantages of ultrasonic vibration (UV) and nanoparticle jet mist cooling (NJMC). Notwithstanding, the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated. The grinding force, friction coefficient, specific grinding energy, and grinding temperature under dry, drip irrigation, UV, minimum quantity lubrication (MQL), NJMC, and U-NJMC micro-grinding were compared and analyzed. Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N, which were 75.1% and 82.9% less than those in dry grinding, respectively. The minimum friction coefficient and specific grinding energy were achieved using U-NJMC. Compared with dry, drip, UV, MQL, and NJMC grinding, the friction coefficient of U-NJMC was decreased by 31.3%, 17.0%, 19.0%, 9.8%, and 12.5%, respectively, and the specific grinding energy was decreased by 83.0%, 72.7%, 77.8%, 52.3%, and 64.7%, respectively. Compared with UV or NJMC alone, the grinding temperature of U-NJMC was decreased by 33.5% and 10.0%, respectively. These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone.

关键词: micro-grinding     biological bone     ultrasonic vibration (UV)     nanoparticle jet mist cooling (NJMC)     grinding force     grinding temperature    

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0730-2

摘要: Ultrasonic vibration-assisted grinding (UVAG) is an advanced hybrid process for the precision machining of difficult-to-cut materials. The resonator is a critical part of the UVAG system. Its performance considerably influences the vibration amplitude and resonant frequency. In this work, a novel perforated ultrasonic vibration platform resonator was developed for UVAG. The holes were evenly arranged at the top and side surfaces of the vibration platform to improve the vibration characteristics. A modified apparent elasticity method (AEM) was proposed to reveal the influence of holes on the vibration mode. The performance of the vibration platform was evaluated by the vibration tests and UVAG experiments of particulate-reinforced titanium matrix composites. Results indicate that the reasonable distribution of holes helps improve the resonant frequency and vibration mode. The modified AEM, the finite element method, and the vibration tests show a high degree of consistency for developing the perforated ultrasonic vibration platform with a maximum frequency error of 3%. The employment of ultrasonic vibration reduces the grinding force by 36% at most, thereby decreasing the machined surface defects, such as voids, cracks, and burnout.

关键词: ultrasonic vibration-assisted grinding     perforated ultrasonic vibration platform     vibration characteristics     apparent elasticity method     grinding force     surface integrity    

Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber

Guofeng MA, Renke KANG, Zhigang DONG, Sen YIN, Yan BAO, Dongming GUO

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 538-546 doi: 10.1007/s11465-020-0598-y

摘要: Carbon fiber reinforced plastic (CFRP) composites are extremely attractive in the manufacturing of structural and functional components in the aircraft manufacturing field due to their outstanding properties, such as good fatigue resistance, high specific stiffness/strength, and good shock absorption. However, because of their inherent anisotropy, low interlamination strength, and abrasive characteristics, CFRP composites are considered difficult-to-cut materials and are prone to generating serious hole defects, such as delamination, tearing, and burrs. The advanced longitudinal–torsional coupled ultrasonic vibration assisted drilling (LTC-UAD) method has a potential application for drilling CFRP composites. At present, LTC-UAD is mainly adopted for drilling metal materials and rarely for CFRP. Therefore, this study analyzes the kinematic characteristics and the influence of feed rate on the drilling performance of LTC-UAD. Experimental results indicate that LTC-UAD can reduce the thrust force by 39% compared to conventional drilling. Furthermore, LTC-UAD can decrease the delamination and burr factors and improve the surface quality of the hole wall. Thus, LTC-UAD is an applicable process method for drilling components made with CFRP composites.

关键词: longitudinal–torsional coupled     ultrasonically drilling     CFRP     thrust force     hole quality    

Membrane fouling control by ultrasound in an anaerobic membrane bioreactor

SUI Pengzhe, WEN Xianghua, HUANG Xia

《环境科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 362-367 doi: 10.1007/s11783-007-0062-9

摘要: In this study, ultrasound was used to control the membrane fouling online in an anaerobic membrane bioreactor (AMBR). Short-term running experiments were carried out under different operating conditions to explore feasible ultrasonic parameters. The experimental results indicated that when the crossflow velocity was more than 1.0 m/s, membrane fouling could be controlled effectively only by hydrodynamic methods without ultrasound. When ultrasound was applied, an ultrasonic power range of 60–150 W was suitable for the membrane fouling control in the experimental system. The experimental results showed that the membrane fouling was controlled so well that membrane filtration resistance (Σ) could stay at 5 × 10 m for more than a week with the crossflow velocity of 0.75 m/s, which equaled the effect of crossflow velocity of more than 1.0 m/s without ultrasound.

关键词: membrane filtration     filtration resistance     different     feasible ultrasonic     anaerobic membrane    

Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0744-9

摘要: Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials, such as poor machinability, low cutting efficiency, and high energy consumption. High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids. However, the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials. The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing, making it a focus of academic and industrial research. In this review, the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials, including titanium alloys, nickel-based alloys, and high-strength steel, are systematically explored. The laser energy field, ultrasonic energy field, and cryogenic minimum quantity lubrication energy fields are introduced. By analyzing the effects of changing the energy field and cutting parameters on tool wear, chip morphology, cutting force, temperature, and surface quality of the workpiece during milling, the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated. Finally, the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail, providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future.

关键词: difficult-to-machine metal material     green machining     high-speed dry milling     laser energy field-assisted milling     ultrasonic energy field-assisted milling     cryogenic minimum quantity lubrication energy field-assisted milling    

Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation

Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1303-4

摘要: Abstract • A stable and electroconductive CNTs/ceramic membrane was fabricated. • The membrane with the electro-assistance exhibited optimal fouling mitigation. • The removal efficiency was improved by the -2.0 V electro-assistance. • Electro-assisted filtration is energy-saving than that of commercial membrane. Ultrafiltration is employed as an important process for water treatment and reuse, which is of great significance to alleviate the shortage of water resources. However, it suffers from severe membrane fouling and the trade-off between selectivity and permeability. In this work, a CNTs/ceramic flat sheet ultrafiltration membrane coupled with electro-assistance was developed for improving the antifouling and separation performance. The CNTs/ceramic flat sheet membrane was fabricated by coating cross-linked CNTs on ceramic membrane, featuring a good electroconductivity of 764.75 S/m. In the filtration of natural water, the permeate flux of the membrane with the cell voltage of -2.0 V was 1.8 times higher than that of the membrane without electro-assistance and 5.7-fold greater than that of the PVDF commercial membrane. Benefiting from the electro-assistance, the removal efficiency of the typical antibiotics was improved by 50%. Furthermore, the electro-assisted membrane filtration process showed 70% reduction in energy consumption compared with the filtration process of the commercial membrane. This work offers a feasible approach for membrane fouling mitigation and effluent quality improvement and suggests that the electro-assisted CNTs/ceramic membrane filtration process has great potential in the application of water treatment.

关键词: Ultrafiltration     Electro-assistance     CNTs     Membrane fouling mitigation    

Recent progress in electric-field assisted combustion: a brief review

《能源前沿(英文)》 2022年 第16卷 第6期   页码 883-899 doi: 10.1007/s11708-021-0770-z

摘要: The control of combustion is a hot and classical topic. Among the combustion technologies, electric-field assisted combustion is an advanced techno-logy that enjoys major advantages such as fast response and low power consumption compared with thermal power. However, its fundamental principle and impacts on the flames are complicated due to the coupling between physics, chemistry, and electromagnetics. In the last two decades, tremendous efforts have been made to understand electric-field assisted combustion. New observations have been reported based on different combustion systems and improved diagnostics. The main impacts, including flame stabilization, emission reduction, and flame propagation, have been revealed by both simulative and experimental studies. These findings significantly facilitate the application of electric-field assisted combustion. This brief review is intended to provide a comprehensive overview of the recent progress of this combustion technology and further point out research opportunities worth investigation.

关键词: electric field     combustion     flame stabilization     emission reduction     flame propagation    

Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1211-1223 doi: 10.1007/s11705-022-2145-3

摘要: The one-step highly selective oxidation of cyclohexane into cyclohexanone and cyclohexanol as the essential intermediates of nylon-6 and nylon-66 is considerably challenging. Therefore, an efficient and low-cost catalyst must be urgently developed to improve the efficiency of this process. In this study, a Co3O4–CeO2 composite oxide catalyst was successfully prepared through ultrasound-assisted co-precipitation. This catalyst exhibited a higher selectivity to KA-oil, which was benefited from the synergistic effects between Co3+/Co2+ and Ce4+/Ce3+ redox pairs, than bulk CeO2 and/or Co3O4. Under the optimum reaction conditions, 89.6% selectivity to KA-oil with a cyclohexane conversion of 5.8% was achieved over Co3O4–CeO2. Its catalytic performance remained unchanged after five runs. Using the synergistic effects between the redox pairs of different transition metals, this study provides a feasible strategy to design high-performance catalysts for the selective oxidation of alkanes.

关键词: Co3O4–CeO2 composite oxides     cyclohexanone     cyclohexanol     ultrasonic-assisted co-precipitation     selective oxidation     solvent-free    

Ultrasonic assisted EDM: Effect of the workpiece vibration in the machining characteristics of FW4 Welded

Mohammadreza SHABGARD, Hamed KAKOLVAND, Mirsadegh SEYEDZAVVAR, Ramin Mohammadpour SHOTORBANI

《机械工程前沿(英文)》 2011年 第6卷 第4期   页码 419-428 doi: 10.1007/s11465-011-0246-7

摘要:

This paper presents the results of experimental studies carried out to conduct a comprehensive investigation on the influence of ultrasonic vibration of workpiece on the characteristics of Electrical Discharge Machining (EDM) process of FW4 Welding Metal in comparison with the conventional EDM process. The studied process characteristics included the material removal rate (MRR), tool wear ratio (TWR), and surface roughness (Ra and Rmax) of the workpiece after the EDM and ultrasonic assisted EDM (US-EDM) processes. The experiments performed under the designed full factorial procedure and the considered EDM input parameters included pulse on-time and pulse current. The experimental results show that in short pulse on-times, material removal rate in the US-EDM process is approximately quadruple than that of the EDM process. On the contrary, in the long pulse on-times, ultrasonic vibration of work??piece leads to the reduction in the MRR. On the other hand, in short pulse on-times, the TWR in the US-EDM process is lower than that of in the EDM process, and this condition reverses with increase in the pulse on-time. Furthermore, the surface roughness of the workpiece machined by EDM process is slightly lower than that of applied to the US-EDM process.

关键词: electrical discharge machining (EDM)     material removal rate (MRR)     tool wear ratio (TWR)     surface roughness    

Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells

Xiong PENG, Travis J. OMASTA, Justin M. ROLLER, William E. MUSTAIN

《能源前沿(英文)》 2017年 第11卷 第3期   页码 299-309 doi: 10.1007/s11708-017-0495-1

摘要: A Pd-Cu catalyst, with primary B2-type phase, supported by VulcanXC-7R carbon was synthesized via a solvothermal method. The catalysts were physically and electrochemically characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and both cyclic and linear sweep voltammetry using a rotating disk electrode (RDE). During the RDE testing, the half-wave potential of the Pd-Cu/Vulcan catalyst was 50 mV higher compared to that of commercial Pt/C catalyst for the oxygen reduction reaction (ORR) in alkaline media. The Pd-Cu/Vulcan exhibited a specific activity of 1.27 mA/cm and a mass activity of 0.59 A/mg at 0.9 V, which were 4 and 3 times greater than that of the commercial Pt/C catalyst, respectively. The Pd-Cu/Vulcan catalyst also showed higher alkaline exchange membrane fuel cell (AEMFC) performance, with operating power densities of 1100 MW/cm operating on H /O and 700 MW/cm operating on H /Air (CO -free), which were markedly higher than those of the commercial Pt/C. The Pd-Cu/Vulcan catalyst also exhibited high stability during a short-term, AEMFC durability test, with only around 11% performance loss after 30 hours of operation, an improvement over most AEMFCs reported in the literature to date.

关键词: alkaline exchange membrane (AEM)     fuel cell     Pd-Cu     oxygen reduction     high performance     water    

Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control

An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1238-9

摘要: Effects of metabolic uncouplers addition on sludge reduction were carried out. TCS addition effectively inhibited ATP synthesis and reduced sludge yield. The effluent quality such as TOC and ammonia deteriorated but not significantly. Suitable dosage retarded biofouling during sludge water recovery by UF membrane. Energy uncoupling is often used for sludge reduction because it is easy to operate and does not require a significant amount of extra equipments (i.e. no additional tank required). However, over time the supernatant extracted using this method can deteriorate, ultimately requiring further treatment. The purpose of this study was to determine the effect of using a low-pressure ultrafiltration membrane process for sludge water recovery after the sludge had undergone an energy uncoupling treatment (using 3,3′,4′,5-tetrachlorosalicylanilide (TCS)). Energy uncoupling was found to break apart sludge floc by reducing extracellular polymeric substances (EPS) and adenosine triphosphate (ATP) content. Analysis of supernatant indicated that when energy uncoupling and membrane filtration were co-applied and the TCS dosage was below 30 mg/L, there was no significant deterioration in organic component removal. However, ammonia and phosphate concentrations were found to increase as the concentration of TCS added increased. Additionally, due to low sludge concentrations and EPS contents, addition of 30–60 mg/L TCS during sludge reduction increased the permeate flux (two times higher than the control) and decreased the hydraulic reversible and cake layer resistances. In contrast, high dosage of TCS aggravated membrane fouling by forming compact fouling layers. In general, this study found that the co-application of energy uncoupling and membrane filtration processes represents an effective alternative method for simultaneous sludge reduction and sludge supernatant recovery.

关键词: Sludge reduction     Energy uncoupling     Ultrafiltration membrane     Membrane fouling    

Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for protonexchange membrane fuel cells

《能源前沿(英文)》 doi: 10.1007/s11708-023-0907-3

摘要: Platinum (Pt)-based materials are still the most efficient and practical catalysts to drive the sluggish kinetics of cathodic oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, their catalysis and stability performance still need to be further improved in terms of corrosion of both carbon support and Pt catalyst particles as well as Pt loading reduction. Based on the developed synthetic strategies of alloying/nanostructuring Pt particles and modifying/innovating supports in developing conventional Pt-based catalysts, Pt single-atom catalysts (Pt SACs) as the recently burgeoning hot materials with a potential to achieve the maximum utilization of Pt are comprehensively reviewed in this paper. The design thoughts and synthesis of various isolated, alloyed, and nanoparticle-contained Pt SACs are summarized. The single-atomic Pt coordinating with non-metals and alloying with metals as well as the metal-support interactions of Pt single-atoms with carbon/non-carbon supports are emphasized in terms of the ORR activity and stability of the catalysts. To advance further research and development of Pt SACs for viable implementation in PEMFCs, various technical challenges and several potential research directions are outlined.

关键词: oxygen reduction electrocatalysis     Pt single-atom catalysts     conventional Pt-based catalysts     design thoughts and synthesis     metal-support interactions    

Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fibermembrane

Taro Miyoshi, Thanh Phong Nguyen, Terumi Tsumuraya, Hiromu Tanaka, Toru Morita, Hiroki Itokawa, Toshikazu Hashimoto

《环境科学与工程前沿(英文)》 2018年 第12卷 第3期 doi: 10.1007/s11783-018-1018-y

摘要: In this study, we modified a polytetrafluoroethylene (PTFE) hollow-fiber membrane element used for submerged membrane bioreactors (MBRs) to reduce the energy consumption during MBR processes. The high mechanical strength of the PTFE membrane made it possible to increase the effective length of the membrane fiber from 2 to 3 m. In addition, the packing density was increased by 20% by optimizing the membrane element configuration. These modifications improve the efficiency of membrane cleaning associated with aeration. The target of specific energy consumption was less than 0.4 kWh·m in this study. The continuous operation of a pilot MBR treating real municipal wastewater revealed that the MBR utilizing the modified membrane element can be stably operated under a specific air demand per membrane surface area (SAD ) of 0.13 m ·m ·hr when the daily-averaged membrane fluxes for the constant flow rate and flow rate fluctuating modes of operation were set to 0.6 and 0.5 m ·m ·d , respectively. The specific energy consumption under these operating conditions was estimated to be less than 0.37 kWh·m . These results strongly suggest that operating an MBR equipped with the modified membrane element with a specific energy consumption of less than 0.4 kWh·m is highly possible.

关键词: Energy-saving     Membrane bioreactor     Polytetrafluoroethylene (PTFE) membrane     Hollow fiber     Power consumption    

标题 作者 时间 类型 操作

Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO

Zongcheng ZHAN,Xiaojun LIU,Dongzhu MA,Liyun SONG,Jinzhou LI,Hong HE,Hongxing DAI

期刊论文

Recent advances in ultrasonic-assisted machining for the fabrication of micro/nano-textured surfaces

Shaolin XU,Tsunemoto KURIYAGAWA,Keita SHIMADA,Masayoshi MIZUTANI

期刊论文

Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant

期刊论文

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

期刊论文

Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber

Guofeng MA, Renke KANG, Zhigang DONG, Sen YIN, Yan BAO, Dongming GUO

期刊论文

Membrane fouling control by ultrasound in an anaerobic membrane bioreactor

SUI Pengzhe, WEN Xianghua, HUANG Xia

期刊论文

Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal

期刊论文

Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation

Shuo Wei, Lei Du, Shuo Chen, Hongtao Yu, Xie Quan

期刊论文

Recent progress in electric-field assisted combustion: a brief review

期刊论文

Ultrasound-assisted co-precipitation synthesis of mesoporous Co3O4–CeO2 composite oxides for highly selective

期刊论文

Ultrasonic assisted EDM: Effect of the workpiece vibration in the machining characteristics of FW4 Welded

Mohammadreza SHABGARD, Hamed KAKOLVAND, Mirsadegh SEYEDZAVVAR, Ramin Mohammadpour SHOTORBANI

期刊论文

Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells

Xiong PENG, Travis J. OMASTA, Justin M. ROLLER, William E. MUSTAIN

期刊论文

Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control

An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren

期刊论文

Oxygen reduction electrocatalysis: From conventional to single-atomic platinum-based catalysts for protonexchange membrane fuel cells

期刊论文

Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fibermembrane

Taro Miyoshi, Thanh Phong Nguyen, Terumi Tsumuraya, Hiromu Tanaka, Toru Morita, Hiroki Itokawa, Toshikazu Hashimoto

期刊论文